PENKO Engineering B.V.

Your Partner for Fully Engineered Factory Solutions

Penko EasyWeigher End User manual

-
: PENKO

an ETC Company

Penko EasyWeigher manual

Lo INEFOTUCTION ettt ettt ettt et e st e et esa bt e e abeesa bt e e bt e sab e e e abeesabeeeabeesabeeeneesabeeeneenane 3
R CT=l [=] 7 [(=T [T TP TP TP TP P SO U P PPPOSUPPPPPRRTP 3
2.1. Download device descriptions and [IOraries ..o e 3
2.2. Install device descriptions and HBraries. ... iiiiie e s e e et e e e eanes 4

3. View documentation inside the Orary ...t 5
4. Set UP AN @XAMPIE PrOJECE ..eiuiiieiieiiieet ettt s e et s bt e bt e s bt e bt e sab et e abee s be e e sbeesbeeessbesbeeennnesnneas 5
B O T LI o Tl o] o =Y o PPN 5
4.2 EXAMPIE 1O MAPPING cutttittteiieeitie ettt ettt ettt ettt ettt e s et e st esh bt e eat e e sa bt e ebe e e ssbeesaeeesabeesaeeesabeesabeesabeeenneesareennneenn 7
4.3 Weigher status STrUCT MAPPING vooccvveiiieiieeeiiieeeeiiee e seee e e sttt e s st e e sette e e s sstaeeessateeessabaeessbeeeesnsseeessnsseessassenenns 8
4.4 Weigher commands (tare, ZEr0, BIC) ..ccuiiiiiiiiieieiiie et et e e et e e eree e e st e e e e sate e e sebaaeesbreeeensteeesassseeesrssasaans 9
4.5 Reading CONFIGUIATIONuuiiiiiiiie ettt ettt e e e e e e s tte e e saae e e e sabaeesensteeesnseeeesnseeeensreeesnsnneas 11
4.6 Writing configuration — INAUSTIAl MOTEeeieiiiiiiie et s e et e e s s are e e saaaeas 13
4.7 Writing configuration — Certified IMOTEcooeiiiiiiciee ettt et e e e tte e e et e e e s ta e e e eare e e snaaeas 14
4.8 CalIDratioN ...eeiueeieieieeie ettt sttt et et h e bbb st e e et e saeesh e sh e e bt e bt et e eneeeneenbeenbeebens 15

/2

PENKO 2

an ETC Company

Penko EasyWeigher manual

1. INTRODUCTION

The Penko EasyWeigher solution helps to quickly get started with your Omega. It consists of a CODESYS library
for CODESYS V3.5 SP17, and a set of CODESYS device descriptions (*.devdesc.xml) to talk to the option cards.
All files can be downloaded directly from your Omega.

2. GETTING STARTED

This chapter will guide you through downloading and installing the necessary files and libraries, and help you
setup a very simple starter project. Subsequent chapters will further expand this example with more
functionality.

It is expected that you have setup your Omega, and that you can connect to your Omega’s web portal from the
PC you’re working on. See the Omega manual (‘7600M1082-<LANGUAGE>-R8 MANUAL OMEGA.pdf’) on how
to setup your Omega.s

2.1. DOWNLOAD DEVICE DESCRIPTIONS AND LIBRARIES

An archive with device descriptions and libraries can be downloaded from two different locations: from the
Omega web portal (recommended), and via the CODESYS file manager within the IDE.

Recommended method: Download from the Omega web portal

Navigate to your Omega’s web portal, login and click on “CODESYS Downloads”. Follow the steps there to
download the libraries and device descriptions as .zip file from that page, and install in CODESYS, see Figure 1.

& C Y @ localhost:4200/dashboard & 'h * L 0O e H

Penko Omega Controller administrator

4 Dashboard Dashboard

Information My Omega Option cards overview

CODESYS WebVisu CODESYS Downloads

Figure 1. Navigate to "CODESYS getting started".

PENKO

an ETC Company

Penko EasyWeigher manual

Alternative method: Download via the CODESYS IDE file manager

This step only works if you already have your Omega device description installed in the CODESYS IDE and you
have some CODESYS experience. If you haven’t, please get the libraries and device descriptions via one of the
other methods.

First, find and connect to your Omega, and navigate to the ‘Files’ tab in the ‘Device’ window, see Figure 2.

Devices v 2 x| [{ pevice x -
= U Skt 1 z Host | Location o Runtime | Location o
7T evice (erio ooy 3 Communication Settings
+ ETPreTeae Name Size Modified Name Size Modified
. Applications
() omega_Rack (Omega Rack) = Ci\ <Click on the refresh icon to update the list>
Backup and Restore
] i >

Log

PLC Settings

PLC Shell

Users and Groups

Access Rights

Symbol Rights

Licensed Software Metrics

Task Deployment:

Status

Information

Figure 2. Navigate to the 'Files' tab

The local file system is visible on the left side. After clicking the refresh icon on the right side, the file system on

the Omega becomes visible, see Figure 3.

Devices v 2 % || [{ Device x -
=) Exampkrarrs -
Host | Location < Runtime | Location | [/ - “
= (@ Device (Penko Omega) Communication Settings] (=" b8
&0 pLc Logic Name Size Modified Name Size Modified S
& applications 1.
Omega_Rack (Gmega Rack) e G\ r N
Backup and Restore. 3 rend
3 alarms
Files (3 ac_persistence
3 e
2 [cert
(3 Applieation
PLC Settings 2 ektoges
PLC Shell i srenes
Bm sshareds
Users and Groups 0 suseDevas
[suseDevas
Access Rights [0 ¢ChamnelProgramss:
38 sDeviceDescriptions$
Symbol Rights 8w scodesystibrariess.
3 svisus
Licensed Software Metrics [svends
3 salarms
Task Deployment [P
- (3 soncs
e (4 Sogfless
Information [slecFiPaths
[tuxswa 163,68 MB (17L628... 246-20211L:14

Figure 3. Omega file system

All directories CODESYS knows about become visible. The $DeviceDescriptions$ directory contains all device
descriptions that can be used with the Omega. The SCODESYSLibraries$ directory contains CODESYS libraries

that can be installed into your IDE to make use of all Omega functionality. Double-click the
SDeviceDescriptions$ directory, select all device descriptions and use the arrows in the middle to copy them to
a location on your hard drive. Similarly, open the SCODESYSLibrariesS directory and copy the libraries to your
PC.

2.2. INSTALL DEVICE DESCRIPTIONS AND LIBRARIES

Follow the standard CODESYS procedure to install the device descriptions and libraries that were extracted

fromt file.

an ETC Company

Penko EasyWeigher manual

3. VIEW DOCUMENTATION INSIDE THE LIBRARY

Extensive documentation of all objects and types can be found in the Penko EasyWeigher library itself from
within CODESYS. Select the “Penko EasyWeigher Library” in the Library Manager in your project to find
information about the automatically generated objects and how to use them. Here you can also find the list of
enum definitions that is supported by your library.

See Figure 4.
Devices v 8 x || [g] PcPRG Vfff) Library Manager x -
=3 Untited2 = ||[E3 Add Library 3 Delete Library | =5 Properties 73 Details | 5] Placeholders | i) Library Repository @ lcon Legend... 5]
= Device (Penko Omega)
@ it PLC(PL el Name Namespace Effectiv
= ogic
=¥ Aop o + @ 3SLicense = 3SLicense, 3.5.17.0 (35 - Smart Software Solutions GmbH) _35_LICENSE 3.5.17.0)
1. [orary anager #- |BY Breakpoint. ogging = Breakpaint Logging Functions, 3.5.17.0 (35 - Smart Software Solutions GmbH) ~ BPLog 3.5.17.0)
B L] R o Tc i e @ CAA Device Diagnosis = CAA Device Diagnosis, 3.5.17.0 (CAA Technical Workgroup) DED 3.5.17.0)
=@ Tack Configuration # JB) toStandard = ToStandard, 3.5.17.0 (System) IoStandard 3.5.17.0)
5 @ MairTask 2| Penko EasyWeigher Library = Penko EasyWeigher Library, 1.0.17.0 (Penko Engineering BY) I PENKO_EASYWEIGHER 1.0.17.0)
@ PLC_PRG |} standard = Standard, 3.5.17.0 (System) Standard 3.5.17.0]
= ﬂi Omega_Rack (Omega Rack) < >

=M Omega_ADC_DIO_Card (Omega ADC DIC Card)
H Omega_ADC_DIO_easyIND (Omega ADC DIO easyIND)
M Omega_ADC_DIO_easyIND_1 (Omega ADC DIO easyIND)

= @ Penko EasyWegher Library, L0170 ¥ | =0 Inputs/Cutputs @ Documentation
a’l; CalibrateType

ENUM ErrorTy
¢ CommandType L=

E <Empty> a.,; ConfigType €% The members can be only used qualified with enum name.
: <Empty > @2 ErrorType
<Empty >
£ <n #12 Libname Mame Type In.. Address Ini. Comment ~
<Empty> Calibrate :
£ <Emptys § ERROR SU... INT 0 Execution was successful,
P Cammand # ERROR_EX... INT The command is aready in

Figure 4. View Penko Easyweigher library documentation in the CODESYS IDE

4. SET UP AN EXAMPLE PROJECT

Prerequisites

Before setting up an example project, please make sure that your Omega is setup correctly. For more
information on how to do this, and for all connection diagrams, refer to the Omega manual (7600M1082-
<LANGUAGE>-R8 MANUAL OMEGA.pdf’). Please make sure that:

1. You can navigate to the Omega web portal in your browser via its IP address.

2. The first slot in the rack is occupied by an Omega ADC DIO module. It does not matter what is plugged into
the other slots.

3. Aload cell or load cell simulator is attached to the channel 1 load cell connector of the Omega ADC DIO
module.

4.1 CREATE THE PROJECT

When you have confirmed that your Omega is online and its web portal is reachable in your browser, start
CODESYS and create a new ‘Standard project’.

After clicking “OK”, CODESYS asks you to select the device this project is for, and the programming language
you’ll be working in. Follow Figure 5 to select the “Penko Omega (Penko Engineering BV)” device. Then, select
the programming language. In your own future projects you can use what you are most comfortable with, but
this example project will use the Function Block Diagram language (Figure 6)

PENKO 5

an ETC Company

Standard Project X

Standard Project X
You are about to create a new standard project. This wizard will create the following § \o((t,:l'le:i:rf :?tohﬁ :;:i;re[a;_ea:tl:lew standard project. This wizard will create the following
@ objects within this project: e Iz

- One programmable device as specified below - One pragrammable d_evice as specified hE_|DW

- & program PLC_PRG in the language specified below -A (el PLCTPRG inthe language specified below

- & cyclic task which calls PLC_PRG - & cydlic task which calls PLC_PRG

- A reference to the newest version of the Standard library currently installed. - A reference to the newest version of the Standard library currently installed.

Device Penko Omega (Penko Engineering BV) v Device

cMT-CTRL {Weintek Labs., Inc.)

PLC_PRGn | copEsys Control for Raspberry Fi MC 5L (35 - Smart Software Solutions Gmbd PLC_PRG in

CODESYS Control for Raspberry Pi SL (35 - Smart Software Solutions GmbH)
CODESYS Control RTE ¥3 (35 - Smart Software Solutions GmbH)

CODESYS Control RTE V3 x64 (35 - Smart Software Solutions GmbH)
CODESYS Control Win V3 (35 - Smart Software Solutions GmbH)

CODESYS Control Win V3 x64 (35 - Smart Software Solutions GmbH)
CODESYS HMI {35 - Smart Software Solutions GmbH)

CODESYS SoftMotion RTE V3 (35 - Smart Software Solutions GmbH)
CODESYS Softmotion RTE V3 x64 (35 - Smart Software Solutions GmbH)

Structured Text (ST)

CODESYS SoftMotion Win V3 (35 - Smart Software Solutions GmbH)
o _Ccmart Software Solutions Gmbl . .
Figure 6. Select FBD as programming language

Figure 5. Select Penko Omega as device

When the device and language are configured, click OK. You should now see an empty project for a Penko
Omega device, with an “Omega_Rack” as attached device as in Figure 7.

‘@ GettingStarted project - CODESYS
File Edit View Project Build Online Debug Tools Window Help
BEd & o~ X |68 %L 4805 (M 9 M Om |6t 5

| Application [Device:

*+ 3 X

m Library Manager

[F] PLC_PRG (PRG)

Task Configuration

=% MainTask

:] pLc_PRG

= Omega_Rack {Omega Rack)
- <Empty >

<Emptyz

<Empty >

<Empty >

<Empty

<Empty >

<Emptyz

<Empty >

AARRARRRR

Figure 7. An Omega starter project.

Add an Omega ADC DIO module to the Omega Rack

Let CODESYS know about your Omega ADC DIO module by right-clicking the first slot in the Omega Rack, and
select “Plug Device” (Figure 8). You should see four options in the popup window (Figure 9), one of which is the
Omega ADC DIO Card. Select this and click “Plug Device” in the right-bottom corner. After CODESYS has added
the card, click “Close”.

Devices > 3
=13 GettingStarted
= m Device (Penko Omega)

=Bl PLC Logic
= £} Application [ElLCAlIOmega ADC DIO Card|
i) Library Manager Action
[#] PLC_PRG (PRG) (@ Plug device
= @ Task Configuration
= MainTask String for a full text search | vendor | <all vendors:» =
3 PLC_PRG Name Vender Version Description
- =) = [0 Miscelaneous
1. SEngli = (i omega ADC AIO Card Dusl channel ADC and Analog 10 card for the Omega PLC
K 1] omega ADC DIO Card Dual channel ADC and Digital IO card for the Omega PLC
K <Empty> Copy 1 Omega ALO card Penko Engineering BV 5.1/, Dlal channel Analog 10 card for the Omega PLC
K <Empty» Paste [omega b0 Card Penko Engineering BV 3.5.17.0 Dual channel Digital 10 card for the Omega PLC
K <Empty> |% Delete
K <Empty>
£ <emptys Properties...
K <Empty> Add Object
Group by category [] Display all versions (for experts only) [] Display outdated versions
Name: Omega ADC DIO Card ~
Vendor: Perko Engineering BV
Categories:
. . Version: 3.5.17.0 ==
[Download the missing device description Order Number: 760084725
j Edit Object Description: Dual channel ADC and Digital 10 card for the Omega PLC © =Y

Edit Object With...

Plug selected device into the slot
Edit 10 mapping <Empty>

Import mappings from CSV.. @ (You can select another target node inthe navigator while this window is open.)
Export mappings to CSV...

Plug Device Close

Figure 8. Plug a device in the first slot. Figure 9. Select 'Omega ADC DIO Card'

Two new devices have been added of type “Omega ADC DIO easyIND” below the plugged device, one for each channel in the
card.

4.2 EXAMPLE 10 MAPPING

Create a new variable in PLC_PRG called “rNetWeight” of type “std:REAL”:

PROGRAM PLC_PRG
VAR

rNetWeight : REAL;
END VAR

Then map this variable to the “Net” parameter of the first channel. To to this, double click the first channel, navigate to the
“Mapping” tab and open the “Weights” folder. Click the three dots to open a window where you can select the variable to map
(Figure 10). Then follow Figure 11 to add a mapping to “rNetWeight”.

@ GettingStarted.project” - CODESYS - a X
File Edit View Project Buld Online Debug Tools Window Help Git Y8
Bl & it A 4L [| ¥ | Application [Device: PLC Logic] ~ ©F L4 &
Devices - 1 X H Omega_ADC_DIO_easyIND X -
9 eettngSiaried 7| | Penko:omegaCardToaDCOIOMter | Fing Filter Show all - &b Add FB for 10 Channel... * Go to Instance
= [Device (Penko Omega) ace IEC Objects J
= Bl rLC Logic 3 Veriable Mapping Channel Address Type Unit Description
= £} Application B weichis
i) Library Manager Omega ADC DIO Channel IEC 4 4 B Net %00 REAL Net weight
[@ pLcprs PR Obfects 5 Gross %D 1 REAL Gross weight
= (&l Task Configuration Status i Tare %ID2 REAL current tare wei
= & MainTask oty Status %&I812 Penko_EasyWeigher_Library.IndicatorStatus Indicator status
& ric_rrc Information * -4 Digital in
= [Omega_Rack (Omega Rack) %- (2 Digital out
=H Omega_ADC_DIO_Card (Omega ADC DIO Card % [Debuginfo
1-“
M Omega_ADC_DIO_easyIND_1 (Omega ADC DIO easyIND)
K <Empty>
K <Empty>
E <Empty>
E <Empty>
K <Empty>
£ <Empty> < >

Figure 10. Navigate to 10 Mapping.

MANUAL SGM800

Text Search Categories
Variables a Name Ad
= r‘; Application
= & pLC_PRG
[rNetWeight
+- @ IoConfig_Globals
£ >
[structured view Filter |Mone w
Insert with arguments Insert with namespace prefix
Documentation
riet\Weight: REAL(VAR)
conce

Figure 11. Map rNetWeight to the 10 Channel.

The “rNetWeight” variable is now mapped to the “Net” 10 channel of Channel 1 of the Omega ADC DIO Card. There is one more
thing to do though:

If we would upload this, CODESYS will notice that “rNetWeight” is not used in the code, and optimize its access away. To prevent
this, force CODESYS to always update all mapped variables by selecting “Enabled 1” for “Always update variables”. See Figure 12
for how to do this.

Devices > 1 x I, Omega_ADC_DIO_Card @ PLC_PRG B Omega_ADC_DIC_easyIND] pevice x
=1 GettngSiauiad 1. -
= [Device (Penko Omega) Communication Settings Application for /0 handling | Application -
1

Applications PLC Settings

= icati
I Application [] update 10 whilein stop

) Library Manager

Backup and Restore Behaviorforoutputsinstop | Keep current values ~

[pLc_PRG (FRE) 3
=88 Task Configurati i i
i8] Task Configuration Files Always updatevariables |D|sabled (update only if used in a task) (V |)
=g MairTask Hled fndate oo = =
@ PLC_PRG Log Bus Cycle Options 4 - 1L e not used in any task)

=[] omega_Rack (Omega Radk) Bus cycle task
=-M Omega_ADC_DIO_Card (Omega ADC DIO Card) 2. @

M Omegs_ADC_DIO_easyIND (Omega ADC DIO easyIND) Additonal Settings

M Omega_ADC_DIO_easyIND_1 (Omega ADC DIO easyIND) PLC Shell [] Generate force variables for 10 mapping Enable diagnosis fordevices
: :::E:Vv: . [Show /0 wamings as errors
<Er =
: mpty Access Rights
<Empty=
£ <Empty> Symbol Rights
£ <Empty>
£ <Empty> Licensed Software Metrics

Figure 12. Tell CODESYS to always update all variables.

Now we’re ready to login and upload. Changing the weight on the load cell or load cell simulator should be visible in the
rNetWeight variable.

4.3 WEIGHER STATUS STRUCT MAPPING

The weigher status is a struct consisting of a number of bits that describe the current status of the weigher. For example, it tells
you whether or not the weight is stable, if the weight is higher than what the hardware can manage, or if (preset) tare is active.
The mapping is found in the ‘Weights’ folder of the 10 mapping, with the name ‘Status’.

PENKO

an ETC Company

MANUAL SGM800

To use this status in your program, create a new variable with the correct struct type in your program:

PROGRAM PLC PRG
VAR

rNetWeight : REAL;

stStatus : Penko EasyWeigher Library.IndicatorStatus;
END VAR

The CODESYS autocompletion is your friend in the struct type: start typing ‘Penko_’, press “CTRL+Space”, and CODESYS will

automatically fill the rest of the EasyWeigher name. After the ‘., CODESYS will show ‘IndicatorStatus’ as one of the options.

Map stStatus to the Status channel in the IO mapping, similar to how rNet was mapped in the previous section. After this,
your 10 mapping should look like Figure 13 below.

Devices ~ B X || [f] Devie W Omega_ADC_DIO_easylMD x |[g] PLC_PRG -
= Ol GetingStarted 4| | penke:omegacardToADCDIONter | Fing Filter Show all ~ d Add FB for |0 Channel... *= Goto Instance
= [pevice (Penko Omega) ace IEC Objects
=& pPLC Logic | Omeqa ADC DIO Channel /O Variable Mapping ~ Channel Address Type Unit
=} Application Mapping - £ Weights
i Library Manager Omega ADC DIO Channel IEC 45 Appication.PLC_PRG.rNetWeight 9 et o REAL
[#] PLc_prG (PRG) Obfects i Gross %ID1 REAL
={#3 Task Configuration Status N Tare %ID2 REAL
= ¢ MainTask #- 4 Application.PLC_PRG.stStatus "% Status %IB2 Penko_EasyWeigher Library. IndicatorStatus
] pLc_Pro Information #- [Digital in
=T Omega_Rack (Omega Rack) +- [Digital out
=M Omega_ADC_DIO_Card (Omega ADC DIO Card) +[4 Debug info
H Omega_ADC_DIO_easyIND (Omega ADC DIO easyIND)
B Omega_ADC_DIO_easyIND_1 (Omega ADC DIO easyIND)
K <Empty>
E <Empty>
E <Empty>
K <Empty>
K <Empty>
E <Empty>
K <Empty> c >

Figure 13. Map the stStatus struct to the Status Channel

4.4 WEIGHER COMMANDS (TARE, ZERO, ETC)

Each channel in the rack automatically generates four objects that can be found in the “IEC Objects” tab of the respective
channel. The name of the object is prefixed with the name of the channel it belongs to. In the example that is
“Omega_ADC_DIO_easyIND”, then an underscore, and then the type of object.

If the name of the channel changes, then the prefix changes as well.

Basic CODESYS skills are assumed in this section, such as adding a POU and creating a Visualization with a textfield and a button.

This section will focus on the Command object. We will extend the example program with visualization that shows the current
weight, and a button to perform a tare action.

Show the current weight in a Visualization.

First add a Visualization Manager to your project. Then add a textfield with the text “%f” and our “rNetWeight” variable as “Text
variable”.

Upload your program and verify that the visualization shows the current weight.

Insert the Command function block for the first channel.

Insert an empty Box in the first network of the PLC_PRG, and make it the “_Command” object that starts with the same name as
your first channel. If you did not rename the first channel, the object will be called “Omega_ADC_DIO_easyIND_Command”. See
Figure 14. If all went well, the first network now contains the Omega_ADC_DIO_easyIND_Command object as shown in Figure
15.

an ETC Company

MANUAL SGM800

Devees v 8 X|| [0) MCPRG x @) Veuslmaton | (@ Devee | Omega AOC DIO_easydO
Gettngstarted - PROGRAM PLC_PRG

(9] PLC_PRG (RE) TextSearch Categories
= @ Task Configuraton -
= & ManTask ‘m] Type O
2) 0% @
+ # Devicaodes
. 7"@ # Omega_ADC_DIO_Card
Omega_ADC_DIO_easyiho
il I # Omega_ADC_DIO_easyIND_1
il # Omega_ADC_DIO_easyIND_1_Calibrate
Omega_ADC_DIO_easyIND_1_Command
Omega_ADC_DIO_casyIND_1_ConfigRead
0_easyIND_1_Configwrite + Other Operators
syIND brats + Function Blocks
Omega_Rack
[insert with namespace prefix
IND_Command: PENKO_EASTWEIG-ER, Command(VAR_GLOBAL)
< > 4
5 Devies |) (] < M oox S} 42 TooBox B &
Messages - Total 4 error(s), 0 waming(s), 61 message(s)
Download - [0 veroris) [& 0 warming(s [@ 1 messaget
h 4 (:) Cancel Object
Figure 14. Use an Omega_ADC_DIO_easyIND_Command function block.
Devices - O X ‘ Omega_ADC_DIO_easyIMD @ PLC_PRG X
=2 GettingStarted - 1 PROGRAM FLC_FRG
= m Device (Penko Omega) 8 = VAR
=21 PLC Logic 3 rNetWeight: REAL;
) o 4| END VAR
=1} Application -
m Library Manager
[PLc_PRG (FRG)
= @ Task Configuration
2w
5 MainTask S
Eﬁ PLC_PRG 1 Omega_ADC_DIO easyIND Command
=[] omega_Rack (Omega Rack) Penko EasyWeigher Library.Command
--H Omega_ADC_DIO_Card (Omega ADC DIO Card) \227 —|xExecute xDone
H Omega_ADC_DIO_easyIMD (Omega ADC DIO easyIND) 227 —|eCommandType RError — 777
M Omega_ADC_DIO_easyIND_1 (Omega ADC DIO easyIND) i —rOpticnalDataln eError [— 22?2
K <Empty >
K <Empty >

Figure 15. The Omega_ADC_DIO_easyIND_Command function block has been added.

The Command object has three inputs:

1. xExecute: a Boolean that indicates whether the function block should be doing its command.
eCommandType: an Enum of type CommandType. The Enum is defined in the EasyWeigher library, and defines for example
COMMAND_TARE_SET. See the documentation inside the EasyWeigher library for more commands (follow Chapter 3).

3. rOptionalDataIn: Some commands require an input argument, such as COMMAND PTARE_SET to set the preset tare to a
predefined weight. Other commands such as COMMAND TARE_SET do not require an input argument. In those cases, this
field can be left empty.

The Command also has three outputs:

1. xDone: a Boolean that is TRUE when the function block is done, and FALSE when the function block is not executing
(xExecute is FALSE) or not yet done executing and thus needs another execution cycle.

2. xError:aBoolean that is TRUE when something went wrong during execution.

3. eError:an enum of type ErrorType, which indicates what went wrong in case of an error. When there is no error, this
will be ERROR_SUCCESS. All values of this enum are defined and documented in the EasyWeigher library.

Use the Command function block for the first channel.

We will set and reset a tare as a test. First, add two booleans to your PLC_PRG that indicates whether the Command functions

block will be run, one to set the tare, and one to reset the tare:
PROG C_PRG

PENKO

an ETC Company

10

MANUAL SGM800

VAR
rNetWeight : REAL;
XExecuteTareSet : BOOL;
XExecuteTareReset : BOOL;
END VAR

Then, tie xExecuteTareSet to the xExecute input of the Command function block, and set the eCommandType input to
COMMAND_TARE_SET. The easiest way to do this is start typing “COMMAND_" in the eCommandType field, and press CTRL+SPACE to
let CODESYS do the autocompletion. This will give a list of COMMAND_ values that can be filled in. COMMAND TARE_SET can be
selected from the list by double clicking the entry. CODESYS will automatically add the namespace, which is

‘Penko_EasyWeigher Library.CommandType’ in this example.

For testing it would be nice to automatically set xExecuteTareSet back to FALSE when the command block is done: to achieve
this, xExecuteTareSet is set to FALSE when xDone is TRUE, and is unchanged while xDone is FALSE. See Figure 16.

=
1 Omega ADC DIO easyIND Command
Penko EasyWeigher Library.Command ROT AND
xExecuteTareSet —|xExecute xDone —— — & —— xExecuteTareSet
Penko_EasyWeigher_ Library.CommandIype.COMMAND TARE SET —eCommandType AError [~
—{rCpticnalDataln eError —

xExecuteTareSet —

Figure 16. A simple network to activate a tare.

In a similar way, we can create a network to reset the tare below that. Note that we added two new Boolean values:
xExecuteTareReset and xDoneTareReset, and that the eCommandType input has changed to COMMAND TARE_RESET.

Omega_ADC_DIO easyIND Command

Penko EasyWeigher Library.Command ROT AND
xExecuteTareReset — xExecute xDone & #ExecuteTarsReset
Penko_EasyWeigher_Library.CommandType .COMMAND_TARE_RESET —eCommandType XError
—rOpticnalDataln eError [~

xExecuteTareReset —|

Figure 17. A simple network to deactivate the tare.

Set the xExecuteTareSet and xExecuteTareReset variables using a button in the Visualization or via the debugging
functionality, and check that setting a tare sets the net weight to zero, and resetting the tare sets the weight back.

4.5 READING CONFIGURATION

The function block to read configuration is named $(deviceName)_ConfigRead. If the first channel of the first Omega card was
not renamed, the function block named Omega_ADC_DIO_easyIND_ConfigRead can be used to read configurations of that
channel.

Insert the ConfigRead function block for the first channel.

To start, add a third network, insert an empty box in that network and make it the _ConfigRead function block, similar to how
the _Command function block was inserted in Figure 14. Your network should look like Figure 18 below:

an ETC Company

11

MANUAL SGM800

3 Cmega_ ADC_DIO easyIND ConfigRead

Penko EasyWeigher Library.ConfigRead

22— xExecute xDone
A4 —|eConfigType ixError - 777

eError — 777
udiDataQut [~ 2772

rDatalut — ?77?

Figure 18. The Omega_ADC_DIO_easyIND_ConfigRead block is added to a network.

All inputs and outputs of this ConfigRead block are explained in detail in the EasyWeigher library documentation within
CODESYS, (see Chapter 3 on how to get there. The Config block works following the same principles as the Command block: it
executes while input xExecute is high, and input eConfigType defines what configuration parameter is being read.

It is important to note that there are two data outputs: udiDataOut and rDataOut. Some configuration parameters are weights.
As before, all weights are of type REAL, and these parameters thus need to be read from rDataOut.

For example, when eConfigType is set to CONFIG_MAXLOAD, the block will read the MaxLoad parameter from the weigher
configuration, and this is a weight. Therefore, the correct output appears at rDataOut.

Similarly, when eConfigType is set to CONFIG_DECIMALPOINT, the block will read out the number of decimals the weigher uses
internally. This is inherently an integer number. Therefore, the correct output appears at udiDataOut.

All possible enum values for eConfigType can be found in the EasyWeigher library documentation within CODESYS (see Chapter
3), and each value documents which output must be used.

Use the ConfigRead function block for the first channel.

Let’s use this ConfigRead block to read out the decimal precision that is used in the weight. First, add some variables to the
PLC_PROG, one to execute the block and one to store its result:

PROGRAM PLC_PRG

VAR
rNetWeight : REAL;
XExecuteTareSet : BOOL;
XxExecuteTareReset : BOOL;
xExecuteConfigReadDecimals : BOOL;
udiDecimalsRead : UDINT;

END VAR

The number of decimals that the weigher uses internally is read by setting input eConfigType to

PENKO EASYWEIGHER.ConfigType.CONFIG DECIMALPOINT, adding the udiDecimalsRead variable to the udiDataOut output, and
tieing the xExecuteConfigReadDecimals variable to the xExecute input like we did before. For easier testing, the NOT-AND
network is added after xDone to automatically reset xExecuteConfigReadDecimals. See Figure 19 below.

3 Omega_ ADC DIQ easyIND ConfigRead

Penko EasyWeigher Library.ConfigRead NOT AND
xExecuteConfigReadDecimals — xExecute xDone & RExecuteConfigReadDecimals
Penko_EasyWeigher Library.ConfigType.CONFIG_DECIMALPOINT —

eConfigType XError —

eError —
udiDataQut —udiDecimalsRead

rDatalut [~

xExecuteConfigReadDecimals —

Figure 19. Variables are tied to the ConfigRead block.

(penko

an ETC Company

12

MANUAL SGM800

Use the CODESYS debugging functionality to set xExecuteConfigReadDecimals to TRUE, and observe that the number of
decimals that are used in the weighing card are put into udiDecimalsRead. In the example below, the weight used three
decimals precision (Figure 20).

@ PLC_PRG X | [f] Device H Omega_ADC_DIO_easyIND

Device.Application.PLC_PRG

Expression Type Value Prepared value Address Comment
@ riNetWeight REAL
4§ xExecuteTareSet BOOL
@ xExecuteTareReset BOOL 2. RIGHT MOUSE BUTTON
@ xExecuteConfigReadDecimals BOOL l)
@ udiDecimalsRead UDINT Cut
Copy
Paste
Delete
o TUPCIUNU DU T LI EELTUr |— e
Select All
xExecu Browse 3
44 Add to Watchlist
2 Omega_ADC_DIO easyIND Command Advanced N
Penko EasyWeigher Library.Command
xExecuteTarsReser [ENGH— xEx=cute xDone Input Assistant...
Penko_EasyWeigher Library.CommandType.COMMAND TARE RESET — eCommandType xError = IR Refactering »
[@]—rOpticnalDataln eError [~ [EREQ
il New Breakpoint...
Toggle Breakpoint
xExecu 22 L
Run to Cursor
3 Omega_ADC_DIO_easyIND_ConfigRead Set Next Statement
Penko FEasyWeigher Library.ConfigRead 38 I Write All Values of 'Device. Application’ l
xExecuteConfigReadDecimals cute xDone 3 el Py e e
Penko_EasyWeigher Library.ConfigType.CONFIG_DECIMALPOINT eConfigType xError = | oree Sl
Unforce All Values of 'Device.Application’
eError [~ [§
udiDataQut [~ w Display Mode 4

Figure 20. Use the CODESYS debugger to toggle reading the number of decimals.

4.6 WRITING CONFIGURATION — INDUSTRIAL MODE

Writing a configuration in industrial mode is very similar to reading a configuration. The only difference is that a different
Function Block must be used, which has inputs udiDataIn and rDatalIn, instead of two outputs udiDataOut and rDataOut.

Insert the ConfigWrite function block for the first channel.
Add a fourth network, insert an empty box in that network and make it the _ConfigWrite function block, similar to how the
_Command function block was inserted in Figure 14.

Your network should look like Figure 19 below.

4 Cmega ADC DIO easyIND ConfigWrite
Penko EasyWeigher Library.ConfigWrite
222 — xExecute xDone
242 —|eConfigType xError — 777
JAA2 —|udiDataln eError — 727

—rDataln

Figure 21. The Omega_ADC_DIO_easyIND_ConfigWrite block is added to a network.

All inputs and outputs are documented extensively in the EasyWeigher library documentation within CODESYS, and work very
similar to the earlier Command and ConfigRead blocks.

This ConfigWrite block has two data inputs, udiDataIn and rDatalIn, to allow two types of data to be written to the indicator
configuration. rDatalIn is used to write weights of type REAL such as the MaxLoad parameter, udiDatalIn is used to write integer
values such as the number of decimals that is used internally.

IMPORTANT: Whenever one input is used, the other input MUST BE ZERO.

PENKO

an ETC Company

13

MANUAL SGM800

Use the ConfigRead function block for the first channel.

Add two new variables xExecuteConfigWriteDecimals and udiDecimalsWrite to your PLC_PRG, and complete the network
similar to the ConfigRead network from the previous section. In the end, your network should look like Figure 22 below:

4 Omega_RDC_DIO_easyIND ConfigWrite
PENFD EASYWEIGHER.ConfigWrite HOT AND
x¥ExecuteConfigWriteDecimals —xExecute - xDone 4‘_‘* & —— xExecuteConfigWriteDecimals
DENED _EASYWEIGHER.ConfigType.CONFIG_DECIMALPOINT —|eConfigType xError [~
udiDecimalWrite —udiDataln eError
0 —zDataln

xExecuteConfigiritelacimals —

Figure 22. Variables are tied to the ConfigWrite block.

Note that, because udiDataIn must be used and not rDataIn, rDataIn has been set to zero.

Use the CODESYS debugging functionality to prepare a value for udiDecimalsWrite and xExecuteConfigWriteDecimals, similar
to the previous section and Figure 20. If the number of decimals was e.g. 3, set udiDecimalsWrite to 2. After writing the new
udiDecimalsWrite value (don’t forget to set xExecuteConfigWriteDecimals high to do the write action), the weight in
rNetWeight should have changed accordingly (e.g. by changing a factor 10).

4.7 WRITING CONFIGURATION — CERTIFIED MODE

When the Omega weighing module is configured to be in certified mode, the configuration is protected by a TAC value. The TAC
value is used to prevent the configuration from being changed accidentally. Trying to write a config value without unlocking the
configuration will result in an eError=ERRORTYPE_ACCESSDENIED.

Managing the TAC value

Unlocking the configuration is not difficult: first read the current required TAC value, and then write that same TAC value back.
This will unlock the configuration for approximately 100 seconds.

In a certifiable system, the CODESYS programmer must create a bit of visualization for the end user, who has to enter the
current TAC manually to write back his configuration. This way, writing configuration values becomes a conscious effort for the
end user which reduces chances of accidentally changing the configuration and thereby breaking the certification.

While it is possible for the CODESYS programmer to programmatically read out the TAC and write it back automatically, it takes
away the conscious effort for the end user, and thus takes away the safety mechanism. If your product needs to be certified, this
is very probably not allowed.

The most user friendly way to write the configuration from for example a visualization is to let your user fill in the configuration
they want, and then write it to the Omega weighing module all at once. That way, your user does not have to enter the TAC
code each time they write a configuration value, but only the one time that all configuration values are written.

Reading the TAC value

The TAC value is part of the configuration block, and can be read just like any configuration using the _ConfigRead block of your
module, with input eConfigType set to PENKO EASYWEIGHER.ConfigType.CONFIG_TAC. See Figure 23 below. If you want to have
xExecuteConfigReadTAC automatically reset when the block is done, use the same NOT+AND boxes after xDone as we did in the
previous examples.

(PENKO

an ETC Company

14

MANUAL SGM800

[=3]

Cmega_ ADC DIO easyIND ConfigRead

Penko EasyWeigher Library.ConfigRead

xExecuteConfigReadTac —{xExecute xDone
Penko_EssyWeigher Library.ConfigIype.CONFIG_TAC —eConfigType xError [~
eError —

undiDatalut — udiTacRead
rDatalut

Figure 23. Read the TAC value using the ConfigRead block.

Writing the TAC value

The TAC is written in the same way as any configuration value, using the _ConfigWrite block. Again, the eConfigType must be
set to PENKO_EASYWEIGHER.ConfigType.CONFIG_TAC, as in Figure 24.

7 Cmega_ADC DIC easyIND ConfigWrite

Penko EasyWeigher Library.ConfigWrite
xExecuteConfigWriteTac —{xExecute xDone —
Penko_EasyWeigher Library.ConfigType.CONFIG_TAC —eConfigType HxError —
udiTacWrite —(udiDataln eError —
0 —rDataln

Figure 24. Write the TAC value using the ConfigWrite block.

4.8 CALIBRATION

All calibration actions are done using the $(deviceName)_Calibrate function block, as shown in Figure 25.

3 Omega_ ADC _DIO_easyIND Calibrate

Penko EasyWeigher Library.Calibrate
—xExecute xDone ——
—eCalibrateType HError —
—udiOpticnallDataln eError —
—rOpticnallataln udiCpticonalDatalut —

rOptionalDatalut —

Figure 25. The _Calibrate block.

The _Calibrate block operates in the same way as the _Command, _ConfigRead and _ConfigWrite blocks. Depending on the
calibration action you choose for input eCalibrateType you may have to provide extra input data to udiOptionalDataln or
rOptionalDataln. Also depending on the calibration action is whether it function block generates an output in
udiOptionalDataOut or rOptionalDataOut. Which actions there are, and what inputs they need and what outputs they
generate is documented in the EasyWeigher library documentation within CODESYS.

Calibration is very similar to writing configurations in certified mode. The same way that the TAC code acts as a protection
against accidental changes in the configuration, the calibration is protected by a CAL code. The CAL code needs to be managed
in the same way as the TAC code in certified mode.

P

ENKO

N,

an ETC Company

15

MANUAL SGM800

Managing the CAL code

The CAL code must be managed in the same way as the TAC code, see Section 4.6 above. In short, when a calibration action
returns ERRORTYPE_ACCESSDENIED, you will have to let your user enter the CAL code to unlock the calibration.

Reading and writing the CAL code
To start, add the following variable definitions to your PLC_PRG:

PROGRAM PLC_PRG

VAR
// all the previous definitions
/]
xExecuteCalibrateReadCal : BOOL;
xExecuteCalibrateWriteCal : BOOL;
udiCalRead : UDINT;
udiCalWrite : UDINT;
eErrorCalibrateReadCal : Penko EasyWeigher Library.ErrorType;
eErrorCalibrateWriteCal : Penko EasyWeigher Library.ErrorType;
END_VAR

Reading and writing the CAL code is done in a similar way to reading and writing the TAC code. However, this time the _Calibrate
block is used, instead of the _ConfigRead or _ConfigWrite block. See Figure 26. Reading and writing the CAL code..

3 Omega ADC DID easyIND Calibrate
Penko_EasyWeigher Library.Calibrate HOT AND
xExecuteCalibrateReadCal —xExecute xDone — xExecuteCalibrateReadCal
Penko_EasyWeigher Library.CalibrateType.CALIBRATE RERDCAL —eCalibrateType XError — &
—|udilpticnalDataln eError — eErrorCalibrateReadCal
—|xOptionalDataln udiOptionalDatacut — udiCalRead
rOptionalDatalut —
¥ExecuteCalibrateReadCal —
4 Omega_ADC_DIO_easyIND_Calibrate
Penko EasyWeigher Library.Calibrate ROT AND
XExecuteCalibrateWriteCal — xExecute xDone — —— xExecuteCalibratedriceCal
Penko_FesyWeigher Library.CalibrateType.CALIBRATE WRITECAL —eCalibrateType xError [~ &
udiCalWrite —|udiOptionalDataln eError —eErrorCalibrateWrite(
—|xCptionalDataln udiOptionalDataCut —
rOptionalDataCut [~
xExecuteCalibratedriteCal —

Figure 26. Reading and writing the CAL code.

P

ENKO

Ne———
an ETC Company

16

About PENKO

At PENKO Engineering we specialize in weighing. Weighing is inherently chemically correct, independent of consistency, type or temperature of
the raw material. This means that weighing any kind of material guaranties consistency and thus, it is essential to sustainable revenue generation
in any industry. As a well-established and proven solution provider, we strive for the ultimate satisfaction of custom design and/or standard
applications, increasing your efficiencies and saving you time, saving you money.

Whether we are weighing raw materials, components in batching, ingredients for mixing or dosing processes, - or weighing of static containers
and silos, or - in-motion weighing of railway wagons or trucks, by whatever means required during a process, we are essentially forming vital
linkages between processes and businesses, anywhere at any time. We design, develop and manufacture state of the art technologically
advanced systems in accordance with your strategy and vision. From the initial design brief, we take a fresh approach and a holistic view of every
project, managing, supporting and/or implementing your system every step of the way. Curious to know how we do it? www.penko.com

Certifications PENKO Professional Services

PENKO sets high standards for its products and product performance PENKO is committed to ensuring every system is installed, tested,
which are tested, certified and approved by independent expert and programmed, commissioned and operational to client specifications.
government organizations to ensure they meet —and even —exceed Our engineers, at our weighing center in Ede, Netherlands, as well as
metrology industry guidelines. A library of testing certificates is ourdistributors around the world, strive to solve most weighing-system
available for reference on: issues within the same day. On a monthly basis PENKO offers free
training classes to anyone interested in exploring modern, high-speed
weighing instruments and solutions. Training sessions on request:
www.penko.com/training

www.penko.com/nl/publications certificates.html

OIML S
c E @ - PENKO Distributor

® EOR: A complete overview you will find on: www.penko.com/Find-A-Dealer
b

LISTED

PENKO PENKO Engineering B.V. = Schutterweg 35, NL 6718C Ede = Tel +31 (0) 318525630 = info@penko.com
PRy el Web = www.penko.com = Copyright © 2022 ETC All rights reserved. 7600M1085-EN-R3-EASYWEIGHER END USER MANUAL.DOCX

http://www.penko.com/
http://www.penko.com/nl/publications_certificates.html
http://www.penko.com/training
http://www.penko.com/Find-A-Dealer

